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PERTURBATIONS OF FUNCTIONAL DIFFERENTIAL

SYSTEMS

Dong Man Im*

Abstract. We show the boundedness and uniform Lipschitz sta-
bility for the solutions to the functional perturbed differential sys-
tem

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T1y(s))ds + h(t, y(t), T2y(t)),

under perturbations. We impose conditions on the perturbed part∫ t

t0
g(s, y(s), T1y(s))ds, h(t, y(t), T2y(t)), and on the fundamental

matrix of the unperturbed system y′ = f(t, y) using the notion of
h-stability.

1. Introduction and Preliminaries

We consider the nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0,(1.1)

and the perturbed differential system of (1.1) including an operator T
such that
(1.2)

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T1y(s))ds+ h(t, y(t), T2y(t)), y(t0) = y0,

where f ∈ C(R+ × Rn,Rn), g, h ∈ C(R+ × Rn × Rn,Rn) , R+ =
[0,∞), f(t, 0) = 0, g(t, 0, 0) = h(t, 0, 0) = 0, and T1, T2 : C(R+,Rn) →
C(R+,Rn) are continuous operators and Rn is an n-dimensional Eu-
clidean space. We always assume that the Jacobian matrix fx = ∂f/∂x
exists and is continuous on R+ × Rn. Let x(t, t0, x0) denote the unique
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solution of (1.1) with x(t0, t0, x0) = x0, existing on [t0,∞). Then we can
consider the associated variational systems around the zero solution of
(1.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(1.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(1.4)

The fundamental matrix Φ(t, t0, x0) of (1.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (1.3).

Pachpatte [20,21] investigated the stability, boundedness, and the
asymptotic behavior of the solutions of perturbed nonlinear systems
under some suitable conditions on the perturbation term g and on the
operator T .

Pinto [22,23] introduced the notion of h-stability (hS) with the inten-
tion of obtaining results about stability for a weakly stable system (at
least, weaker than those given exponential asymptotic stability) under
some perturbations. That is, Pinto extended the study of exponential
asymptotic stability to a variety of reasonable systems called h-systems.
Choi, Ryu and Koo [7,8] investigated h-stability of solutions for nonlin-
ear perturbed systems. Goo [11,12] and Im [15] studied the boundedness
of solutions for the nonlinear perturbed differential systems.

The notion of uniformly Lipschitz stability (ULS) was introduced by
Dannan and Elaydi [10]. This notion of ULS lies somewhere between
uniformly stability on one side and the notions of asmptotic stability
in variation of Brauer [4] and uniformly stability in variation of Brauer
and Strauss [3] on the other side. An important feature of ULS is that
for linear systems, the notion of uniformly Lipschitz stability and that
of uniformly stability are equivalent. However, for nonlinear systems,
the two notions are quite distinct. Im and Goo [16-18] studied uniform
Lipschitz stability and asymptotic properties of solutions for nonlinear
perturbed systems.

In this paper, we investigate the boundedness and uniform Lipschitz
stability for the solutions of the perturbed functional differential systems
via t∞-similarity.

Now, we recall some definitions of stability. The symbol | · | will be
used to denote any convenient vector norm on Rn.
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Definition 1.1. [10] The system (1.1) (the zero solution x = 0 of
(1.1)) is called

(S) stable if for any ε > 0 and t0 ≥ 0, there exists δ = δ(t0, ε) > 0
such that if |x0| < δ, then |x(t)| < ε for all t ≥ t0 ≥ 0,

(US) uniformly stable if the δ in (S) is independent of the time t0,
(ULS) uniformly Lipschitz stable if there exist M > 0 and δ > 0 such

that |x(t)| ≤M |x0| whenever |x0| ≤ δ and t ≥ t0 ≥ 0,
(ULSV) uniformly Lipschitz stable in variation if there exist M > 0

and δ > 0 such that |Φ(t, t0, x0)| ≤M for |x0| ≤ δ and t ≥ t0 ≥ 0.

Definition 1.2. [23] The system (1.1) (the zero solution x = 0 of
(1.1)) is called (hS) h−stable if there exist c ≥ 1, δ > 0, and a positive
bounded continuous function h on R+ such that

|x(t)| ≤ c |x0|h(t)h(t0)
−1

for t ≥ t0 ≥ 0 and |x0| < δ, (here h(t)−1 = 1
h(t)).

LetM denote the set of all n×n continuous matrices A(t) defined on
R+ and N be the subset of M consisting of those nonsingular matrices
S(t) that are of class C1 with the property that S(t) and S−1(t) are
bounded. The notion of t∞-similarity in M was introduced by Conti
[9].

Definition 1.3. A matrix A(t) ∈M is t∞-similar to a matrix B(t) ∈
M if there exists an n × n matrix F (t) absolutely integrable over R+,
i.e., ∫ ∞

0
|F (t)|dt <∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t)(1.5)

for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of
all n × n continuous matrices on R+, and it preserves some stability
concepts [9,14].

Before proceeding to the statement of main results, we give some
known results.

Lemma 1.4. [23] The linear system

x′ = A(t)x, x(t0) = x0,(1.6)
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where A(t) is an n × n continuous matrix, is an h-system (respectively
h-stable) if and only if there exist c ≥ 1 and a positive and continuous
(respectively bounded) function h defined on R+ such that

|Φ(t, t0, x0)| ≤ c h(t)h(t0)
−1(1.7)

for t ≥ t0 ≥ 0, where Φ(t, t0, x0) is a fundamental matrix of (1.6).

We consider Alekseev formula to compare between the solutions of
(1.1) and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(1.8)

where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote
the solution of (1.8) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

Lemma 1.5. [2] Let x and y be a solution of (1.1) and (1.8), re-
spectively. If y0 ∈ Rn, then for all t ≥ t0 such that x(t, t0, y0) ∈ Rn,
y(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t
t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 1.6. [7] If the zero solution of (1.1) is hS, then the zero
solution of (1.3) is hS.

Theorem 1.7. [8] Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution
v = 0 of (1.3) is hS, then the solution z = 0 of (1.4) is hS.

Lemma 1.8. (Bihari − type inequality) Let u, λ ∈ C(R+), w ∈
C((0,∞)) and w(u) be nondecreasing in u. Suppose that, for some
c > 0,

u(t) ≤ c+
∫ t
t0
λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤W−1
[
W (c) +

∫ t
t0
λ(s)ds

]
, t0 ≤ t < b1,

where W (u) =
∫ u
u0

ds
w(s) , W

−1(u) is the inverse of W (u) and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0
λ(s)ds ∈ domW−1

}
.

For the proof we need the following lemma and three corollaries.
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Lemma 1.9. [13] Let u, λi ∈ C(R+) for 0 ≤ i ≤ 10, w ∈ C((0,∞)),
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0
and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ0(s)u(s)ds+

∫ t

t0

λ1(s)w(u(s))ds

+

∫ t

t0

λ2(s)

∫ s

t0

(
λ3(τ)u(τ) + λ4(τ)w(u(τ)) + λ5(τ)

∫ τ

t0

λ6(r)u(r)dr

+λ7(τ)

∫ τ

t0

λ8(r)w(u(r))dr
)
dτds+

∫ t

t0

λ9(s)

∫ s

t0

λ10(τ)u(τ)dτds.

Then, we have

u(t) ≤W−1
[
W (c) +

∫ t

t0

(
λ0(s) + λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ) +

λ5(τ)

∫ τ

t0

λ6(r)dr + λ7(τ)

∫ τ

t0

λ8(r)dr)dτ + λ9(s)

∫ s

t0

λ10(τ)dτ
)
ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0

(λ0(s) + λ1(s) + λ2(s)
∫ s
t0

(λ3(τ)

+λ4(τ) + λ5(τ)
∫ τ
t0
λ6(r)dr + λ7(τ)

∫ τ
t0
λ8(r)dr)dτ

+λ9(s)
∫ s
t0
λ10(τ)dτ)ds ∈ domW−1

}
.

Corollary 1.10. Let u, λi ∈ C(R+) for 0 ≤ i ≤ 8, w ∈ C((0,∞)),
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0
and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ0(s)u(s)ds+

∫ t

t0

λ1(s)w(u(s))ds

+

∫ t

t0

λ2(s)

∫ s

t0

(λ3(τ)u(τ) + λ4(τ)w(u(τ))

+λ5(τ)

∫ τ

t0

λ6(r)u(r)dr)dτds+

∫ t

t0

λ7(s)

∫ s

t0

λ8(τ)u(τ)dτds.

Then, we have

u(t) ≤W−1
[
W (c) +

∫ t

t0

(
λ0(s) + λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)

+λ5(τ)

∫ τ

t0

λ6(r)dr)dτ + λ7(s)

∫ s

t0

λ8(τ)dτ
)
ds
]
,
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where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0

(λ0(s) + λ1(s) + λ2(s)
∫ s
t0

(λ3(τ)

+λ4(τ) + λ5(τ)
∫ τ
t0
λ6(r)dr)dτ + λ7(s)

∫ s
t0
λ8(τ)dτ)ds ∈ domW−1

}
.

Corollary 1.11. Let u, λi ∈ C(R+) for 0 ≤ i ≤ 6, w ∈ C((0,∞)),
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0
and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ0(s)u(s)ds+

∫ t

t0

λ1(s)w(u(s))ds

+

∫ t

t0

λ2(s)

∫ s

t0

(λ3(τ)u(τ) + λ4(τ)w(u(τ))

+λ5(τ)

∫ τ

t0

λ6(r)u(r)dr)dτds.

Then, we have

u(t) ≤W−1
[
W (c) +

∫ t

t0

(
λ0(s) + λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)

+λ5(τ)

∫ τ

t0

λ6(r)dr)dτ
)
ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0

(λ0(s) + λ1(s) + λ2(s)
∫ s
t0

(λ3(τ)

+λ4(τ) + λ5(τ)
∫ τ
t0
λ6(r)dr)dτ)ds ∈ domW−1

}
.

Corollary 1.12. Let u, λi ∈ C(R+) for 0 ≤ i ≤ 6, w ∈ C((0,∞))
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds

+

∫ t

t0

λ3(s)

∫ s

t0

λ4(τ)u(τ)dτds+

∫ t

t0

λ5(s)

∫ s

t0

λ6(τ)w(u(τ))dτds,

0 ≤ t0 ≤ t.
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Then

u(t) ≤W−1
[
W (c) +

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+λ5(s)

∫ s

t0

λ6(τ)dτ
)
ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0

(λ1(s) + λ2(s) + λ3(s)
∫ s
t0
λ4(τ)dτ

+λ5(s)
∫ s
t0
λ6(τ)dτ)ds ∈ domW−1

}
.

2. Main Results

In this section, we study the boundedness and uniform Lipschitz sta-
bility for solutions of the perturbed functional differential systems via
t∞-similarity.

To obtain bounded properties and ULS, the following assumptions
are needed:

(H1) fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and
|x0| ≤ δ for some constant δ > 0.

(H2) The solution x = 0 of (1.1) is hS with the increasing function h.
(H3) w(u) is nondecreasing in u such that u ≤ w(u) and 1

vw(u) ≤
w(uv ) for all v > 0.

(H4) The solution x = 0 of (1.1) is ULSV.

Theorem 2.1. Let (H1)-(H3) be satisfied. Assume that g in (1.2)
satisfies

(2.1) |g(t, y, T1y)| ≤ a(t)|y(t)|+ |T1y(t)|,

(2.2) |T1y(t)| ≤ b(t)
∫ t

t0

k(s)|y(s)|ds,

(2.3)

|h(t, y(t), T2y(t))| ≤ c(t)w(|y(t)|) + d(t)

∫ t

t0

p(s)w(|y(s)|)ds+ |T2y(t)|,

and

(2.4) |T2y(t)| ≤ m(t)|y(t)|+ n(t)

∫ t

t0

q(s)|y(s)|ds,
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where a, b, c, d, k,m, n, p, q ∈ C(R+)∩L1(R+), w ∈ C((0,∞)), T1, T2 are
continuous operators. Then, any solution y(t) = y(t, t0, y0) of (1.2) is
bounded on on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
c(s) +m(s) +

∫ s

t0

(a(τ)

+b(τ)

∫ τ

t0

k(r)dr)dτ + d(s)

∫ s

t0

p(τ)dτ + n(s)

∫ s

t0

q(τ)dτ
)
ds
]
,

where t0 ≤ t < b1, c = c1|y0|h(t0)
−1, W , W−1 are the same functions

as in Lemma 1.8, and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t
t0

(
c(s) +m(s) +

∫ s
t0

(a(τ) +

b(τ)
∫ τ
t0
k(r)dr)dτ + d(s)

∫ s
t0
p(τ)dτ + n(s)

∫ s
t0
q(τ)dτ

)
ds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.2), respectively. By Theorem 1.6, since the solution x = 0
of (1.1) is hS, the solution v = 0 of (1.3) is hS. Therefore, from (H1),
the solution z = 0 of (1.4) is hS by Theorem 1.7. Using the nonlinear
variation of constants formula due to Lemma 1.5, together with (2.1)-
(2.4) and (H2), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
(∫ s

t0

|g(τ, y(τ), T1y(τ))|dτ

+|h(s, y(s), T2y(s))|
)
ds

≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)h(s)−1
(∫ s

t0

(a(τ)|y(τ)|

+b(τ)

∫ τ

t0

k(r)|y(r)|dr)dτ + d(s)

∫ s

t0

p(τ)w(|y(τ)|)dτ

+m(s)|y(s)|+ c(s)w(|y(s)|) + n(s)

∫ s

t0

q(τ)|y(τ)|dτ
)
ds.
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By (H3), we obtain

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)
(
m(s)

|y(s)|
h(s)

+ c(s)w(
|y(s)|
h(s)

)

+

∫ s

t0

(a(τ)
|y(τ)|
h(τ)

+ b(τ)

∫ τ

t0

k(r)
|y(r)|
h(r)

dr)dτ

+d(s)

∫ s

t0

p(τ)w(
|y(τ)|
h(τ)

)dτ + n(s)

∫ s

t0

q(τ)
|y(τ)|
h(τ)

dτ
)
ds.

Define u(t) = |y(t)|h(t)−1. Then, an application of Corollary 1.10, we
yields

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
c(s) +m(s) +

∫ s

t0

(a(τ)

+b(τ)

∫ τ

t0

k(r)dr)dτ + d(s)

∫ s

t0

p(τ)dτ + n(s)

∫ s

t0

q(τ)dτ
)
ds
]

where c = c1|y0|h(t0)
−1. Hence the above estimation obtains the desired

result since the function h is bounded, and so the proof is complete.

Remark 2.2. Letting b(t) = d(t) = m(t) = n(t) = 0 in Theorem 2.1,
we obtain the similar result as that of Theorem 3.3 in [12].

Theorem 2.3. Let a, b, c, d, k,m, q ∈ C(R+) and let (H1)-(H3) be
satisfied. Assume that g in (1.2) satisfies

(2.5)

∫ t

t0

|g(s, y(s), T1y(s))|ds ≤ a(t)|y(t)|+ |T1y(t)|,

(2.6) |T1y(t)| ≤ b(t)
∫ t

t0

k(s)|y(s)|ds,

(2.7) |h(t, y(t), T2y(t))| ≤ b(t)w(|y(t)|) + b(t)

∫ t

t0

c(s)|y(s)|ds+ |T2y(t)|,

and

(2.8) |T2y(t)| ≤ m(t)|y(t)|+ d(t)

∫ t

t0

q(s)w(|y(s)|)ds,

where a, b, c, d, k,m, q ∈ L1(R+), w ∈ C((0,∞)), T1, T2 are continuous
operators. Then, any solution y(t) = y(t, t0, y0) of (1.2) is bounded on
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[t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
a(s) + b(s) +m(s)

+b(s)

∫ s

t0

(c(τ) + k(τ))dτ + d(s)

∫ s

t0

q(τ)dτ
)
ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t
t0

(
a(s) + b(s) +m(s)

+b(s)
∫ s
t0

(c(τ) + k(τ))dτ + d(s)
∫ s
t0
q(τ)dτ

)
ds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof in
Theorem 2.1, the solution z = 0 of (1.4) is hS. Applying the nonlinear
variation of constants formula due to Lemma 1.5, together with (2.5)-
(2.8) and (H2), we have

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)h(s)−1
(
a(s)|y(s)|

+b(s)

∫ s

t0

(c(τ) + k(τ))|y(τ)|dτ + d(s)

∫ s

t0

q(τ)w(|y(τ)|)dτ

+m(s)|y(s)|+ b(s)w(|y(s)|)
)
ds.

It follows from (H3) that

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)
(

(a(s) +m(s))
|y(s)|
h(s)

+b(s)w(
|y(s)|
h(s)

) + b(s)

∫ s

t0

(c(τ) + k(τ))
|y(τ)|
h(τ)

dτ

+d(s)

∫ s

t0

q(τ)w(
|y(τ)|
h(τ)

)dτ
)
ds.

Set u(t) = |y(t)|h(t)−1. Then, by Corollay 1.12, we obtain

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
a(s) + b(s) +m(s)

+b(s)

∫ s

t0

(c(τ) + k(τ))dτ + d(s)

∫ s

t0

q(τ)dτ
)
ds
]
,
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where c = c1|y0|h(t0)
−1. Thus, any solution y(t) = y(t, t0, y0) of (1.2) is

bounded on [t0,∞), and so the proof is complete.

Remark 2.4. Letting d(t) = m(t) = 0 in Theorem 2.3, we obtain the
similar result as that of Theorem 2.2 in [11].

Theorem 2.5. Let (H3) and (H4) be satisfied. Assume that the
perturbing term g in (1.2) satisfies

(2.9) |g(t, y, T1y)| ≤ a(t)|y(t)|+ |T1y(t)|,

(2.10) |T1y(t)| ≤ b(t)
∫ t

t0

k(s)|y(s)|ds,

(2.11) |h(t, y(t), T2y(t))| ≤ b(t)w(|y(t)|) + n(t)|y(t)|+ |T2y(t)|,

and

(2.12) |T2y(t)| ≤
∫ t

t0

d(s)|y(s)|ds+

∫ t

t0

c(s)w(|y(s)|)ds,

where a, b, c, d, k, n ∈ C(R+) ∩ L1(R+), w ∈ C((0,∞)), T1, T2 are con-
tinuous operators, and

(2.13)

M(t0) =W−1
[
W (M) +M

∫ ∞
t0

(
b(s) + n(s)

+

∫ s

t0

(a(τ) + c(τ) + d(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ
)
ds
]
,

where M(t0) <∞ and b1 =∞, t0 ≤ t < b1, and W , W−1 are the same
functions as in Lemma 1.8. Then the zero solution of (1.2) is ULS.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.2), respectively. By (H4), it is ULS. Applying the nonlinear
variation of constants formula due to Lemma 1.5, together with (H3),
(2.9)-(2.12), we obtain

|y(t)| ≤M |y0|+
∫ t

t0

M |y0|
(∫ s

t0

((a(τ) + d(τ))
|y(τ)|
|y0|

+ c(τ)w(
|y(τ)|
|y0|

)

+b(τ)

∫ τ

t0

k(r)
|y(r)|
|y0|

dr)dτ + n(s)
|y(s)|
|y0|

+ b(s)w(
|y(s)|
|y0|

)
)
ds.
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Let u(t) = |y(t)||y0|−1. Then, by Corollary 1.11, we have

|y(t)| ≤ |y0|W−1
[
W (M) +M

∫ t

t0

(
b(s) + n(s) +

∫ s

t0

(a(τ) + c(τ)

+d(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ
)
ds
]
.

Thus, by (2.13), we obtain |y(t)| ≤M(t0)|y0| for some M(t0) > 0 when-
ever |y0| < δ. This completes the proof.

Remark 2.6. Letting b(t) = c(t) = d(t) = n(t) = 0 in Theorem 2.5,
we obtain the similar result as that of Corollary 3.2 in [5].

Theorem 2.7. Let (H3) and (H4) be satisfied. Assume that the
perturbing term g in (1.2) satisfies

(2.14)

∫ t

t0

|g(s, y(s), T1y(s))|ds ≤ a(t)w(|y(t)|) + |T1y(t)|,

(2.15) |T1y(t)| ≤ m(t)

∫ t

t0

p(s)w(|y(s)|)ds,

(2.16) |h(t, y(t), T2y(t))| ≤ c(t)|y(t)|+ d(t)w(|y(t)|) + |T2y(t)|,

and

(2.17) |T2y(t)| ≤ b(t)
∫ t

t0

q(s)|y(s)|ds+m(t)

∫ t

t0

n(s)w(|y(s)|)ds,

where a, b, c, d,m, n, p, q ∈ C(R+) ∩ L1(R+), w ∈ C((0,∞)), T1, T2 are
continuous operators, and

(2.18)

M(t0) =W−1
[
W (M) +M

∫ ∞
t0

(
a(s) + c(s) + d(s)

+ b(s)

∫ s

t0

q(τ)dτ +m(s)

∫ s

t0

(n(τ) + p(τ))dτ
)
ds
]
,

where M(t0) <∞ and b1 =∞, t0 ≤ t < b1, and W , W−1 are the same
functions as in Lemma 1.8. Then the zero solution of (1.2) is ULS.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.2), respectively. By (H4), it is ULS. Using Lemma 1.5,
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together with (H3) and (2.14)-(2.17), we obtain

|y(t)| ≤M |y0|+
∫ t

t0

M |y0|
(
c(s)
|y(s)|
|y0|

+ (a(s) + d(s))w(
|y(s)|
|y0|

)

+b(s)

∫ s

t0

q(τ)
|y(τ)|
|y0|

dτ +m(s)

∫ s

t0

(n(τ) + p(τ))w(
|y(τ)|
|y0|

)dτ
)
ds.

Define u(t) = |y(t)||y0|−1. Then, from an application of Corollary 1.12,
we have

|y(t)| ≤ |y0|W−1
[
W (M) +M

∫ t

t0

(
a(s) + c(s) + d(s)

+b(s)

∫ s

t0

q(τ)dτ +m(s)

∫ s

t0

(n(τ) + p(τ))dτ
)
ds
]
.

Hence, by (2.18), we obtain |y(t)| ≤ M(t0)|y0| for some M(t0) > 0
whenever |y0| < δ. Thus the theorem is proved.

Remark 2.8. Letting b(t) = c(t) = n(t) = 0 in Theorem 2.7, we
obtain the similar result as that of Theorem 3.6 in [6].

Acknowledgement. The author is very grateful for the referee’s
valuable comments.

References

[1] V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary
differential equations, Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 28-36
(Russian).

[2] F. Brauer, Perturbations of nonlinear systems of differential equations, J. Math.
Anal. Appl. 14 (1966), 198-206.

[3] F. Brauer and A. Strauss, Perturbations of nonlinear systems of differential
equations, III, J. Math. Anal. Appl. 31 (1970), 37-48.

[4] F. Brauer, Perturbations of nonlinear systems of differential equations, IV, J.
Math. Anal. Appl. 37 (1972), 214-222.

[5] S. I. Choi and Y. H. Goo, Lipschitz and asymptotic stability of nonlinear systems
of perturbed differential equations, Korean J. Math. 23 (2015), 181-197.

[6] S. I. Choi and Y. H. Goo, Lipschitz stability for perturbed functional differential
systems, Far East J. Math. Sci. 96 (2015), 573-591.

[7] S. K. Choi and H. S. Ryu, h−stability in differential systems, Bull. Inst. Math.
Acad. Sinica, 21 (1993), 245-262.

[8] S. K. Choi, N. J. Koo and H. S. Ryu, h-stability of differential systems via
t∞-similarity, Bull. Korean. Math. Soc. 34 (1997), 371-383.

[9] R. Conti, Sulla t∞-similitudine tra matricie l’equivalenza asintotica dei sistemi
differenziali lineari, Rivista di Mat. Univ. Parma 8 (1957), 43-47.

[10] F. M. Dannan and S. Elaydi, Lipschitz stability of nonlinear systems of differ-
ential systems, J. Math. Anal. Appl. 113 (1986), 562-577.

https://www.sciencedirect.com/science/article/pii/0022247X66900217
https://www.sciencedirect.com/science/article/pii/0022247X70901186
https://www.sciencedirect.com/science/article/pii/0022247X72902697
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.854.5164&rep=rep1&type=pdf
https://www.researchgate.net/publication/273895348_Lipschitz_stability_for_perturbed_functional_differential_systems
http://pdf.medrang.co.kr/kms01/BKMS/34/BKMS-34-3-371-383.pdf
https://www.sciencedirect.com/science/article/pii/0022247X86903252


238 Dong Man Im

[11] Y. H. Goo, Boundedness in nonlinear perturbed functional differential systems,
J. Appl. Math. and Informatics, 33 (2015), 447-457.

[12] Y. H. Goo, h-stability and boundedness in the functional differential systems,
Far East J. Math. Sci. 99 (2016), 1215-1231.

[13] Y. H. Goo, Perturbations of nonlinear functional differential systems, Far East
J. Math. Sci. 103 (2018), 767-784.

[14] G. A. Hewer, Stability properties of the equation by t∞-similarity, J. Math.
Anal. Appl. 41 (1973), 336-344.

[15] D. M. Im, Boundedness for nonlinear perturbed functional differential systems
via t∞-similarity, J. Chungcheong Math. Soc. 29 (2016), 585-598.

[16] D. M. Im and Y. H. Goo, Asymptotic property for perturbed nonlinear functional
differential systems, J. Appl. Math. and Informatics, 33 (2015), 687-697.

[17] D. M. Im and Y. H. Goo, Uniformly Lipschitz stability and asymptotic property
of perturbed functional differential systems, Korean J. Math. 24 (2016), 1-13.

[18] D. M. Im and Y. H. Goo, Perturbations of nonlinear perturbed differential sys-
tems, Far East J. Math. Sci. 101 (2017), 1509-1531.

[19] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory
and Applications Vol. 1, Academic Press, New York and London, 1969.

[20] B. G. Pachpatte, Stability and asymptotic behavior of perturbed nonlinear sys-
tems, J. diff. equations, 16 (1974) 14-25.

[21] B. G. Pachpatte, Perturbations of nonlinear systems of differential equations,
J. Math. Anal. Appl. 51 (1975), 550-556.

[22] M. Pinto, Perturbations of asymptotically stable differential systems, Analysis
4 (1984), 161-175.

[23] M. Pinto, Stability of nonlinear differential systems, Applicable Analysis, 43
(1992), 1-20.

*
Department of Mathematics Education
Cheongju University
Cheongju Chungbuk 360-764, Republic of Korea
E-mail : dmim@cju.ac.kr

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=2ahUKEwji3vjiiJjiAhWVwIsBHf7-AfMQFjACegQIARAB&url=http%3A%2F%2Fwww.kpubs.org%2Farticle%2FarticleDownload.kpubs%3FdownType%3Dpdf%26articleANo%3DE1MCA9_2015_v33n3_4_447&usg=AOvVaw1vzuR8JbxRw_Otre8yrr8Q
https://www.researchgate.net/publication/303290524_H-stability_and_boundedness_in_the_functional_differential_systems
https://www.researchgate.net/publication/283782375_Perturbations_in_nonlinear_functional_differential_systems
https://www.sciencedirect.com/science/article/pii/0022247X73902096
http://www.ccms.or.kr/data/pdfpaper/jcms29_4/29_4_585.pdf
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=2ahUKEwiF07GmiZjiAhWgxYsBHalhDRkQFjACegQIBhAC&url=http%3A%2F%2Fwww.kpubs.org%2Farticle%2FarticleDownload.kpubs%3FdownType%3Dpdf%26articleANo%3DE1MCA9_2015_v33n5_6_687&usg=AOvVaw2Jytq41NZ_ELdGcHup2jBW
http://kkms.org/index.php/kjm/article/view/415
https://www.researchgate.net/publication/316426572_Perturbations_of_nonlinear_perturbed_differential_systems
https://books.google.co.kr/books/about/Differential_and_Integral_Inequalities.html?id=5vlQAAAAMAAJ&redir_esc=y
https://www.sciencedirect.com/science/article/pii/0022039674900254
https://www.degruyter.com/view/j/anly.1984.4.issue-1-2/anly.1984.4.12.161/anly.1984.4.12.161.xml
https://www.tandfonline.com/doi/abs/10.1080/00036819208840049
https://pdf.sciencedirectassets.com/272578/1-s2.0-S0022247X00X0621X/1-s2.0-0022247X75901067/main.pdf?x-amz-security-token=AgoJb3JpZ2luX2VjENf%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIEixz4Ywq5gX4PEOfenfTqrFb27wjqZrtpYteX4iW6U6AiAbJaLcFNXRmpsYpUKyPyUzjE4jhqaAmow0Xra3DjQ%2FOyrjAwjQ%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaDDA1OTAwMzU0Njg2NSIM8jZI6hMxuGQWxGEhKrcDfIx5X7NTSLrikks5g6qnZxY7Klk7LThfYonTR3gnX5jqDXBbSjmTjGMIhHIIeQ6Jv48Y6o%2FJUgwCRZuO%2F4TkS8oqcXVIMTYYOGSFuTUSAnj5%2FWgXynieIFLv0h2a7OSjYKrETn%2B3FDFEUzuSDA9QLyZ5dF4OEgIsRcHQsIXjncMY7IJCrXdySu0RFzbzUZHMvwaCx%2Fdl%2BeQPyCskbg4ut2wmH1hwoByafnsb3jknJ9XSvWxAPWIydcm99Novrjn6Bwo%2B4xRNtkUVSKz3E51mw09MFYM1ZjwqngnzcELnBNN3UKQvXgCuqSDqVG8u0Kd9%2BHORgx0B%2F41kTNKH%2FbY%2BWDGJKM4AG%2FWHzJXRlOcTcFtbRWIMfi%2FVkth9KsB34nar3DpnmvTha027wjKOk%2B4ajvz0jOwrM212v8pWQ5tXTSDqlHpMP7ULv7aIqnroErqH6p2K28yTn4EjjHSD4%2FG%2F151Ew%2BFmXBL0zy%2FgUy7bSxtzoIKdan19zqu538ohlKjttkvqvJS4eLpyviWL%2BLZaPPPOXqtT54tWa7B2%2BFaVDZ6ZGjQQer1QQ%2FbmeoCvy51TCSJLQwn4sDCEyenmBTq1Ae9Lial%2FvouLj9jJhezMrK9e3tUDHhC08EfS267mQrC22T0BJVcY%2BWvPpv1sl%2FdlzdXqTDHD%2Fi%2BjkV95zLiMp7Vy8BKi8PnRBugSdkn6V44oZzo7%2F0iA%2B7ibn7yQ1VxOuLrr09q2%2BXb2%2BwnLStAM5XxJ7eq83VLHFJX7Op%2BrNK8ulB0diIGuyg06%2FuU9HDuxhTyIMNA%2FGRhITAMcMV5hLNZPdN0UIG%2F7W%2Fr%2BU7C7DKl4fjUTVYM%3D&AWSAccessKeyId=ASIAQ3PHCVTYVXQHZSXX&Expires=1557818968&Signature=SB8Pv7pwiD8xTzdzgM%2Fclp%2BDTmY%3D&hash=ef64e3c76f7c89134c790ba4a1d06927afb52b10f62d4d0bcca475cfde634e52&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=0022247X75901067&tid=spdf-43c1ef28-4be1-428f-a614-94892cd453a9&sid=f0ca584914f3d24e0b4972d6be9d5e7b78a3gxrqb&type=client

